Abstract

An essentially unique homeomorphic solution to the Beltrami equation with measurable coefficients was found in the 1930s by Morrey. The most well-known proof from the 1960s uses the theory of Calderón–Zygmund and singular integral operators in $$L^p(\mathbb {C})$$ . We will present an alternative method to solve the Beltrami equation using the Hodge star operator and standard elliptic PDE theory. We will also discuss a different method to prove the regularity of the solution. This approach is partially based on work by Dittmar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.