Abstract

Raver1 is an hnRNP protein that interacts with the ubiquitous splicing regulator PTB and binds to cytoskeletal components like α-actinin and vinculin/metavinculin. Cell culture experiments suggested that raver1 functions as corepressor in PTB-regulated splicing reactions and may thereby increase proteome complexity. To determine the role of raver1 in vivo, we inactivated the gene by targeted disruption in the mouse. Here we report that raver1-deficient mice develop regularly to adulthood and show no obvious anatomical or behavioral defects. In keeping with this notion, cells from raver1-null mice were indistinguishable from wild type cells and displayed normal growth, motility, and cytoskeletal architecture in culture. Moreover, alternative splicing of exons, including the model exon 3 of α-tropomyosin, was not markedly changed in mutant mice, suggesting that the role of raver1 for PTB-mediated exon repression is not absolutely required to generate splice variants during mouse development. Interestingly however, loss of raver1 caused significantly reduced plasticity of synapses on acute hippocampal slices, as elicited by electrophysiological measurements of markedly lower LTP and LTD in mutant neurons. Our results provide evidence that raver1 may play an important role for the regulation of neuronal synaptic plasticity, possibly by controlling especially the late LTP via posttranscriptional mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.