Abstract

We report an experimental and theoretical study on new noble-gas hydride complex HKrCCHCO2, which is the first known complex of a krypton hydride with carbon dioxide. This species was prepared by the annealing-induced H + Kr + CCHCO2 reaction in a krypton matrix, the CCHCO2 complexes being produced by UV photolysis of propiolic acid (HCCCOOH). The H-Kr stretching mode of the HKrCCHCO2 complex at 1316 cm-1 is blue-shifted by 74 cm-1 from the most intense H-Kr stretching band of HKrCCH monomer. The observed blue shift indicates the stabilization of the H-Kr bond upon complexation, which is characteristic of complexes of noble-gas hydrides. This spectral shift is slightly larger than that of the HKrCCHC2H2 complex (+60 cm-1) and significantly larger than that of the HXeCCHCO2 complex (+32 and +6 cm-1). On the basis of comparison with ab initio computations at the MP2 and CCSD(T) levels of theory, the experimentally observed absorption is assigned to the quasi-parallel configuration of the HKrCCHCO2 complex. The calculated complexation-induced spectral shift of the H-Kr stretching band (60.4 or 72.7 cm-1 from the harmonic calculations at the MP2 and CCSD(T) levels, respectively) agrees well with the experimental value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call