Abstract

In \cite{kahn2022hitting}, Kahn gave the strongest possible, affirmative, answer to Shamir's problem, which had been open since the late 1970s: Let $r \ge 3 $ and let $n$ be divisible by $r$. Then, in the random $r$-uniform hypergraph process on $n$ vertices, as soon as the last isolated vertex disappears, a perfect matching emerges. In the present work, we prove the analogue of this result for clique factors in the random graph process: At the time that the last vertex joins a copy of the complete graph $K_r$, the random graph process contains a $K_r$-factor. Our proof draws on a novel sequence of couplings which embeds the random hypergraph process into the cliques of the random graph process. An analogous result is proved for clique factors in the $s$-uniform hypergraph process ($s \ge 3$).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.