Abstract
AbstractElectrospinning has rapidly progressed over the past few decades as an easy and versatile way to fabricate fibers with diameters ranging from micrometers to tens of nanometers that present unique and intricate morphologies. This has led to the conception of new technologies and diverse methods that exploit the basic electrohydrodynamic phenomena of the electrospinning process, which has in turn led to the invention of novel apparatuses that have reshaped the field. Research on revamping conventional electrospinning has principally focused on achieving three key objectives: upscaling the process while retaining consistent morphological traits, developing 3D nanofibrous macrostructures, and formulating novel fiber configurations. This review introduces an extensive group of diverse electrospinning techniques and presents a comperative study based on the apparatus type and output. Then, each process's advantages and limitations are critically assessed to identify the bona fide practicability and relevance of each technological breakthrough. Finally, the outlook on future developments of advanced electrospinning technologies is outlined, with an emphasis on upscaling, translational research, sustainable manufacturing and prospective solutions to current shortcomings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.