Abstract

The growth efficiencies (E; stemwood growth per unit leaf area) of balsam fir (Abiesbalsamea (L.) Mill.) trees from 20 stands were reconstructed over the 30-year period from 1960 to 1989 in order to determine if E could be used to predict tree mortality occurring during and after an epidemic of eastern spruce budworm (Choristoneurafumiferana (Clem.)). Growth efficiencies were reconstructed based on the relationship between age and the number of annual growth rings in the cross-sectional area of heartwood at breast height (R2 = 0.97) and on the previously demonstrated relationship between sapwood area and leaf area of balsam fir across a wide geographic area. Profile and logistic regression analyses demonstrated that apparent E (i.e., the historically reconstructed E) of surviving trees was greater than that of dead trees for every year of the 30-year analysis period. For trees in the 25- to 35-year age-class in 1960, apparent E was the only variable measured prior to the epidemic that was significantly related to balsam fir mortality. For all trees (aged 11 to 46 years in 1960), both tree age and apparent E were significant factors prior to the epidemic. During and following the epidemic, several of the more standard mensurational variables (e.g., diameter and basal area growth) were also significantly associated with balsam fir mortality, but apparent E had the highest levels of significance. Using logistical regression, critical E values below which trees would be predicted to die were calculated as 5-year running averages for the period prior to the epidemic (1960–1968). These were stable at around 0.17 × 10−4 m2 basal area growth•(m2 leaf area)−1•year−1. Following the epidemic, critical E values were again stable but at a lower level of around 0.07. There was a negative exponential relationship between apparent E and leaf area. Furthermore, for the same level of leaf area, surviving trees had a higher apparent E than trees that died, up to approximately 30 m2 of leaf area. These results suggest that growth efficiency should be considered as part of standard forest inventories in the balsam fir zone because of its ease of measure and its apparent ability to provide a sensitive, physiologically based index of forest health. Furthermore, the technique of historically reconstructing E demonstrated in this study may be of interest for other types of dendrochronological research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call