Abstract

The historical development of the hydroseral vegetation of three humic lakes was studied. We applied a combination of methods to reconstruct the past vegetation (plant macroscopic remains, peat decomposition, sediment chemistry and radiocarbon dating). The contemporary environment of these lakes was assessed by vegetation and water chemistry analyses. The oldest foreshore sediments were formed 13075–12700 cal BP (Lake Suchar VI), 10115–9670 cal BP (Lake Suchar III) and 8747–8479 cal BP (Lake Widne). The differences in contemporary vegetation are reflected in the subfossil plant assemblages. From the beginning, poor fens and bogs occurred beside Lake Suchar III, moderately rich and poor fens were developed at Lake Suchar VI, while reedswamps and moderately rich fens occurred at Lake Widne. The foreshore vegetation changed over time but only within a restricted range, specific for each lake corresponding to the hydrochemical differences between the lakes. Lakes are classified as humic if some features are combined, such as the specific vegetation and water parameters. However, over the past few decades escalating climatic and anthropogenic changes could transform the character of these water bodies. The application of multidisciplinary methods permitted comparison of the development of three apparently similar lakes and identification of significant ecological differences.

Highlights

  • Nauman (1917) was the first to mention humic lakes in the scientific literature

  • They are characterized by catchments covered with peat and/or overgrown by coniferous forests, the presence of Sphagnum carpets in the vicinity of water bodies, the high content of weak humic acids (HS), low-calcium content, low pH (4.5–6.0), small algal biomass, poor taxonomic biodiversity, higher respiration than primary production (Salonen et al, 1983; Wetzel, 1983; Bronmark & Hansson, 2005; Gabka & Owsianny, 2006)

  • According to De Haan (1992), these substances alone flowing into lakes from catchment peat bogs are responsible for lake dystrophication

Read more

Summary

Introduction

Nauman (1917) was the first to mention humic lakes in the scientific literature. Classifying lakes from the ecological point of view, he classified humic lakes as dystrophic. A few years later, Thienemann (1922) dividing lakes into groups introduced a new term for the humic/dystrophic lake—brown water lake. One of the most specific features of these water bodies is a presence of organic, dark brown, semi-liquid sediment called ‘‘dy.’’ They are characterized by catchments covered with peat and/or overgrown by coniferous forests, the presence of Sphagnum carpets in the vicinity of water bodies, the high content of weak humic acids (HS), low-calcium content, low pH (4.5–6.0), small algal biomass, poor taxonomic biodiversity, higher respiration than primary production (Salonen et al, 1983; Wetzel, 1983; Bronmark & Hansson, 2005; Gabka & Owsianny, 2006). According to De Haan (1992), these substances alone flowing into lakes from catchment peat bogs are responsible for lake dystrophication

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call