Abstract

Mitochondrial DNA and allozyme variation was examined in populations of two Neotropical butterflies, Heliconius charithonia and Dryas iulia. On the mainland, both species showed evidence of considerable gene flow over huge distances. The island populations, however, revealed significant genetic divergence across some, but not all, ocean passages. Despite the phylogenetic relatedness and broadly similar ecologies of these two butterflies, their intraspecific biogeography clearly differed. Phylogenetic analyses of mitochondrial DNA sequences revealed that populations of D. iulia north of St. Vincent are monophyletic and were probably derived from South America. By contrast, the Jamaican subspecies of H. charithonia rendered West Indian H. charithonia polyphyletic with respect to the mainland populations; thus, H. charithonia seems to have colonized the Greater Antilles on at least two separate occasions from Central America. Colonization velocity does not correlate with subsequent levels of gene flow in either species. Even where range expansion seems to have been instantaneous on a geological timescale, significant allele frequency differences at allozyme loci demonstrate that gene flow is severely curtailed across narrow ocean passages. Stochastic extinction, rapid (re)colonization, but low gene flow probably explain why, in the same species, some islands support genetically distinct and nonexpanding populations, while nearby a single lineage is distributed across several islands. Despite the differences, some common biogeographic patterns were evident between these butterflies and other West Indian taxa; such congruence suggests that intraspecific evolution in the West Indies has been somewhat constrained by earth history events, such as changes in sea level.Corresponding Editor: S. Karl

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call