Abstract

Previous studies have suggested that histone methylation can modulate carcinogenesis and cancer progression. For instance, the histone methyltransferase SET and MYND domain containing 2 (SMYD2) is overexpressed in several types of cancer tissue. The aim of the present study was to determine whether SMYD2 could serve a therapeutic role in ovarian clear cell carcinoma (OCCC). Reverse transcription-quantitative PCR was used to examine SMYD2 expression in 23 clinical OCCC specimens. Moreover, OCCC cell proliferation and cell cycle progression were also examined following small interfering RNA-mediated SMYD2 silencing or treatment with a selective SMYD2 inhibitor. SMYD2 was significantly upregulated in clinical OCCC specimens, compared with normal ovarian tissue. In addition, SMYD2 knockdown decreased cell viability as determined via a Cell Counting Kit-8 assay. Moreover, the proportion of cells in the sub-G1 phase increased following SMYD2 knockdown, suggesting increased apoptosis. Treatment with the SMYD2 inhibitor LLY-507 suppressed OCCC cell viability. These results suggested that SMYD2 could promote OCCC viability, and that SMYD2 inhibition induced apoptosis in these cells. Thus, SMYD2 inhibitors may represent a promising molecular targeted approach for OCCC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call