Abstract

BackgroundSETD8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. SETD8 and H4K20me1 play a role in a number of essential biologic processes, including cell cycle progression, establishment of higher order chromatin structure, and transcriptional regulation. SETD8 is highly expressed in erythroid cells and erythroid deletion of Setd8 is embryonic lethal by embryonic day 11.5 (E11.5) due to profound anemia, suggesting that it has an erythroid-specific function. The function of SETD8 in the hemopoietic system is poorly understood. The goal of our study was to gain insights into the function of SETD8 during erythroid differentiation.ResultsWe performed ATAC-seq (assay for transposase-accessible chromatin) on sorted populations of E10.5 Setd8 mutant and control erythroblasts. Accessibility profiles were integrated with expression changes and a mark of heterochromatin (H3K27me3) performed in wild-type E10.5 erythroblasts to further understand the role of SETD8 in erythropoiesis. Data integration identified regions of greater chromatin accessibility in Setd8 mutant cells that co-located with H3K27me3 in wild-type E10.5 erythroblasts suggesting that these regions, and their associated genes, are repressed during normal erythropoiesis. The majority of these more accessible regions were located in promoters and they frequently co-located with the NFY complex. Pathway analysis of genes identified through data integration revealed stemness-related pathways. Among those genes were multiple transcriptional regulators active in multipotent progenitors, but repressed during erythroid differentiation including Hhex, Hlx, and Gata2. Consistent with a role for SETD8 in erythroid specification, SETD8 expression is up-regulated upon erythroid commitment, and Setd8 disruption impairs erythroid colony forming ability.ConclusionTaken together, our results suggest that SETD8 is an important regulator of the chromatin landscape during erythroid differentiation, particularly at promoters. Our results also identify a novel role for Setd8 in the establishment of appropriate patterns of lineage-restricted gene expression during erythroid differentiation.

Highlights

  • Hematopoiesis is the process by which differentiated blood cells are generated from multipotent stem and progenitors

  • We sought to delineate the function of SETD8 during erythroid commitment and differentiation, and observed an unexpected role in regulating the chromatin landscape and suppressing genes whose expression is typically restricted to other parts of the hematopoietic hierarchy

  • To gain insights into the function of SETD8 during erythropoiesis, we performed assay for transposase-accessible chromatin using sequencing (ATAC-seq) on erythroblasts sorted from the blood of E10.5 Setd8 mutant (Setd8 fl/fl: erythropoietin receptor promoter (EpoRCre)) and control (Setd8 fl/+;EpoRcre, Setd8 fl/fl) embryos (Fig. 1a)

Read more

Summary

Introduction

Hematopoiesis is the process by which differentiated blood cells are generated from multipotent stem and progenitors. SETD8 and H4K20me are involved in a diverse and important array of biologic processes including cell cycle progression, DNA damage repair, higher order chromatin structure, and transcriptional regulation (reviewed in [11, 12]). We sought to delineate the function of SETD8 during erythroid commitment and differentiation, and observed an unexpected role in regulating the chromatin landscape and suppressing genes whose expression is typically restricted to other parts of the hematopoietic hierarchy. SETD8 and H4K20me play a role in a number of essential biologic processes, including cell cycle progression, establishment of higher order chromatin structure, and transcriptional regulation. The goal of our study was to gain insights into the function of SETD8 during erythroid differentiation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call