Abstract

Histone acetylation is an important modification for the regulation of chromatin accessibility and is controlled by two kinds of histone-modifying enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). In filamentous fungi, there is increasing evidence that HATs and HDACs are critical factors related to mycelial growth, stress response, pathogenicity and production of secondary metabolites (SMs). In this study, seven A. niger histone deacetylase-deficient strains were constructed to investigate their effects on the strain growth phenotype as well as the transcriptomic and metabolic profiles of secondary metabolic pathways. Phenotypic analysis showed that deletion of hosA in A. niger FGSC A1279 leads to a significant reduction in growth, pigment production, sporulation and stress resistance, and deletion of hdaA leads to an increase in pigment production in liquid CD medium. According to the metabolomic analysis, the production of the well-known secondary metabolite fumonisin was reduced in both the hosA and hdaA mutants, and the production of kojic acid was reduced in the hdaA mutant and slightly increased in the hosA mutant. Results suggested that the histone deacetylases HosA and HdaA play a role in development and SM biosynthesis in A. niger FGSC A1279. Histone deacetylases offer new strategies for regulation of SM synthesis.

Highlights

  • Transcriptional regulation in filamentous fungi is strongly influenced by histone posttranslational modifications such as methylation, acetylation, phosphorylation, ubiquitylation and sumoylation [1,2].The acetylation of N-terminal core histone tails is of utmost importance, and this dynamic process of acetylation is controlled by two histone modification enzymes with opposing activities: histone acetyltransferases (HATs), which transfer acetyl groups from acetyl-CoA to the ε-amino groups of lysine residues and histone deacetylases (HDACs), which catalyze the removal of this modification [1].Histone acetylation is generally associated with elevated transcription, while deacetylated histones are often associated with gene repression [2]

  • A total of eight HDACs were predicted in the A. niger genome based on the genome annotation in the ASPGD database (Table 1)

  • HDACs [15,16,17], class I contributing to the major part of total HDAC activity, class II contributing to a minor part

Read more

Summary

Introduction

Transcriptional regulation in filamentous fungi is strongly influenced by histone posttranslational modifications such as methylation, acetylation, phosphorylation, ubiquitylation and sumoylation [1,2].The acetylation of N-terminal core histone tails is of utmost importance, and this dynamic process of acetylation is controlled by two histone modification enzymes with opposing activities: histone acetyltransferases (HATs), which transfer acetyl groups from acetyl-CoA to the ε-amino groups of lysine residues and histone deacetylases (HDACs), which catalyze the removal of this modification [1].Histone acetylation is generally associated with elevated transcription, while deacetylated histones are often associated with gene repression [2]. Transcriptional regulation in filamentous fungi is strongly influenced by histone posttranslational modifications such as methylation, acetylation, phosphorylation, ubiquitylation and sumoylation [1,2]. The acetylation of N-terminal core histone tails is of utmost importance, and this dynamic process of acetylation is controlled by two histone modification enzymes with opposing activities: histone acetyltransferases (HATs), which transfer acetyl groups from acetyl-CoA to the ε-amino groups of lysine residues and histone deacetylases (HDACs), which catalyze the removal of this modification [1]. There is still evidence that the deacetylation of histones could contribute to transcriptional activation as well [3]. Histone acetylation/deacetylation has attracted extensive attention because this process was found to significantly affect the production of secondary metabolites (SMs).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.