Abstract

Histone deacetylases (HDACs) play a key role in signaling in many cell types. However, little is known about the participation of HDACs, particularly sirtuins (SIRTs), in platelet reactivity. To investigate the role of HDACs in platelets, we examined the effects of SIRT inhibition on platelet function and protein acetylation in human platelets. We used washed platelets obtained from healthy subjects. Cambinol (SIRT1 and SIRT2 inhibitor), AGK2 (specific SIRT2 inhibitor) and EX527 (specific SIRT1 inhibitor) were used as SIRT inhibitors. Platelets were stimulated with collagen, thrombin, or U46619, and platelet responses were determined according to optical aggregometry findings, dense granule release, and cytosolic calcium levels (Fura-2AM fluorescence). Protein acetylation and phosphorylation were assessed by immunoblotting. SIRT inhibition remarkably reduced platelet responses (aggregation, granule release, and cytosolic calcium level; P<0.05). SIRT2 was present in platelets at the level of mRNA and protein, and its specific inhibition reduced platelet responses. The acetylated protein pattern observed in resting platelets changed during platelet aggregation. Inhibition of SIRT2 increased the acetylation of Akt kinase, which in turn blocked agonist-induced Akt phosphorylation and glycogen synthase kinase-3β phosphorylation, which are markers of Akt activity. Finally, collagen-induced aggregation provoked Akt acetylation. Regulation of protein acetylation by SIRT2 plays a central role in platelet function. The effects of SIRT2 are mediated in part by the acetylation and inhibition of Akt. These results open a new avenue for research into the control of platelet function, and may help to identify new therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.