Abstract

Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

Highlights

  • Signalling and create cardiovascular risk[6]

  • In this work we study the effect of the histone deacetylases (HDACs) inhibitor Entinostat (MS275), which is already in clinical trials for cancer treatment, on hepatic lipid metabolism in HepaRG cells by quantifying lipid store droplets and their distribution at single cell level utilizing a label-free microscopy technique, coherent anti-Stokes Raman scattering (CARS)

  • If the intermediates are converted to triglycerides and sequestered as in perilipin-coated droplets in the liver, it has been shown that insulin resistance in mice can be reduced albeit with the development of hepatosteatosis[6]

Read more

Summary

Introduction

Signalling and create cardiovascular risk[6] These new aspects of lysine acetylation as a metabolic modulator motivate studies of the impact of synthetic HDAC inhibitors on hepatic lipid metabolism: such drugs can potentially offer novel therapeutic solutions for diseases that affect a large proportion of the population and they reside among the most promising classes of drugs currently under clinical evaluation. In this work we study the effect of the HDAC inhibitor Entinostat (MS275), which is already in clinical trials for cancer treatment, on hepatic lipid metabolism in HepaRG cells by quantifying lipid store droplets and their distribution at single cell level utilizing a label-free microscopy technique, coherent anti-Stokes Raman scattering (CARS). We demonstrate that Entinostat induces the sequestration of lipid droplets with increased lipid coat proteins, highlighting the potentialities of Entinostat and inhibitors of HDACs in the treatment of metabolic syndrome

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call