Abstract

Histone lysine acetylation orchestrates transcriptional activity essential for diverse cellular events across organisms, but it remains poorly understood how an acetylated lysine affects cellular functions in filamentous fungal pathogens. Here, we show the functions of a histone acetyltransferase that is phylogenetically close to Mst2 in fission yeast and specifically acetylates histone H3K14 in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest management. Deletion of mst2 in B. bassiana resulted in moderate growth defects on rich and minimal media, delayed conidiation, and drastic reduction (75%) in conidiation capacity under normal culture conditions. The Δmst2 conidia suffered slower germination, decreased hydrophobicity, attenuated virulence, and reduced thermotolerance and UV-B resistance. The Δmst2 mutant also displayed increased sensitivities to DNA damaging, oxidative, cell wall perturbing, and osmotic stresses during conidial germination and colony growth at optimal 25°C. Intriguingly, the phenotypic changes were accompanied with transcriptional repression of related gene sets, which are required for asexual development and conidial hydrophobicity or cascaded for CWI and HOG pathways, and encode the families of superoxide dismutases (SOD), catalases, heat-shock proteins, and trehalose or mannitol-metabolizing enzymes. Consequently, total SOD and catalase activities, trehalose and mannitol contents, and hydrophobicity were remarkably lowered in the hyphal cells or conidia of Δmst2. All of these changes were well restored by targeted mst2 complementation. Our results indicate that Mst2 enables to mediate global gene transcription and/or post-translation through H3K14 acetylation and plays an essential role in sustaining the biological control potential of B. bassiana against arthropod pests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.