Abstract
Introduction The vulnerability of the hippocampus to the effects of aging has been found to be associated with a decline in growth hormone/insulin like growth factor-1 (GH/IGF-1), and an increase in oxidative stress. We have evidence that long-living GH-deficient Ames dwarf mice have enhanced antioxidant protection in the periphery but the protection in the central nervous system is less clear. Material and methods In the present study, we evaluated the antioxidative defense enzyme status in the hippocampus of Ames dwarf and wild type mice at 3, 12 and 24 months of age and examined the ability of each genotype to resist kainic acid-induced (KA) oxidative stress. An equiseizure concentration of KA was administered such that both genotypes responded with similar seizure scores and lipid peroxidation. Results We found that GH-sufficient wild type mice showed an increase in oxidative stress as indicated by the reduced ratio of glutathione: glutathione disulfide following KA injection while this ratio was maintained in GH-deficient Ames dwarf mice. In addition, glutathione peroxidase activity (GPx) as well as GPx1 mRNA expression was enhanced in KA-injected Ames dwarf mice but decreased in wild type mice. There was no induction of Nrf-2 (an oxidative stress-induced transcription factor) gene expression in Ames dwarf mice following KA further suggesting maintenance of antioxidant defense in GH-deficiency under oxidative stress conditions. Discussion Therefore, based on equiseizure administration of KA, Ames dwarf mice have an enhanced antioxidant defense capacity in the hippocampus similar to that observed in the periphery. This improved defense capability in the brain is likely due to increased GPx availability in Ames mice and may contribute to their enhanced longevity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.