Abstract

Esophageal cancer is an aggressive malignancy and often resistant to therapy. Overexpression of EGFR has been associated with poor prognosis of patients with esophageal cancer. However, clinical trials using EGFR inhibitors have not provided benefit for patients with esophageal cancer. Failure of EGFR inhibition may be due to crosstalk with other oncogenic pathways. In this study, expression of YAP1 and EGFR were examined in EAC-resistant tumor tissues versus sensitive tissues by IHC. Western blot analysis, immunofluorescence, real-time PCR, promoter analysis, site-directed mutagenesis, and in vitro and in vivo functional assays were performed to elucidate the YAP1-mediated EGFR expression and transcription and the relationship with chemoresistance in esophageal cancer. We demonstrate that Hippo pathway coactivator YAP1 can induce EGFR expression and transcription in multiple cell systems. Both YAP1 and EGFR are overexpressed in resistant esophageal cancer tissues compared with sensitive esophageal cancer tissues. Furthermore, we found that YAP1 increases EGFR expression at the level of transcription requiring an intact TEAD-binding site in the EGFR promoter. Most importantly, exogenous induction of YAP1 induces resistance to 5-fluorouracil and docetaxcel, whereas knockdown of YAP1 sensitizes esophageal cancer cells to these cytotoxics. Verteporfin, a YAP1 inhibitor, effectively inhibits both YAP1 and EGFR expression and sensitizes cells to cytotoxics. Our data provide evidence that YAP1 upregulation of EGFR plays an important role in conferring therapy resistance in esophageal cancer cells. Targeting YAP1-EGFR axis may be more efficacious than targeting EGFR alone in esophageal cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.