Abstract

The oxidation behavior in air of pure vanadium, V-30Al, V-30Al-10Cr, and V-30Al-10Ti (weight percent) was investigated over the temperature range of 700–1000° C. The oxidation of pure vanadium was characterized by linear kinetics due to the formation of liquid V2O5 which dripped from the sample. The oxidation behavior of the alloys was characterized by linear and parabolic kinetics which combined to give an overall time dependence of 0.6–0.8. An empirical relationship of the form: ΔW/A=Bt + Ct1/2 + D was found to fit the data well, with the linear contribution suspected to be from V2O5 formation for V-30Al and V-30Al-10Cr, and a semi-liquid mixture of V2O5 and Al2O3 for V-30Al-10Ti. The parabolic term is presumed related to the formation of a solid mixture of V2O5 and Al2O3 for V-30Al and V-30Al-10Cr, and TiO2 for V-30Al-10Ti

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call