Abstract

2,4,6-trinitrotoluene (TNT) is a widely used explosive that is relatively insensitive to initiation by shock loading. While the detonation properties of TNT have been extensively reported, the high pressure-temperature (P-T) stability of TNT has not been investigated in detail. At ambient conditions, TNT crystallizes in a monoclinic lattice (space group P21/a), and our previous X-ray diffraction (XRD) measurements at room temperature suggested a phase transition to orthorhombic (space group Pca21) at ~20 GPa. In this work, we have performed in-situ synchrotron XRD and vibrational spectroscopy measurements along the room temperature isotherm to investigate phase stabilities up to 18 GPa. While our Raman spectroscopy measurements indicate spectral changes at ~2 GPa, careful XRD measurements reveal that the monoclinic phase persists up to 10 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.