Abstract

Mycelium is an abundant waste from the fermentation industry, and the environmental problems associated with its required disposal seriously limited the development of fermentation industry. In China, millions of tons of various kinds of mycelium residues were produced each year. Research into providing added-value to mycelium, while avoiding its disposal, is hence of paramount importance. Mycelium can be used as carrier for enzymes, while the enzyme immobilization moreover improves their stability and lifetime performance. Carrier recycling, the natural degradation and disposal of artificial polymer carriers are critical issues in immobilization. This research investigated its use to manufacture a highly-stable immobilized enzyme. An acid pretreatment was employed to enhance the adsorption ability of mycelium, and its adsorption ability was compared with other carriers. Under the optimal conditions, a core-shell immobilized enzyme with porous structure was obtained. The stability and the recycle results of the evaluation indicated the excellent performance of the immobilized enzyme. The mycelium recycling was also investigated to verify the practicability. All the results indicated that the use of a mycelium-based carrier was a promising strategy for the reutilization of the fermentation waste, and this technique provides an alternative way to reduce the total amount of the waste mycelium. Meanwhile, the stability and reusability performance of the mycelium-based immobilization could also decrease the influence of the disposal of the solid waste from denatured enzymes to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.