Abstract

In a previous paper (Olling 1995, \aj, 110, 591; astro-ph/9505002) a method was developed to determine the shapes of dark matter halos of spiral galaxies from an accurate determination of the rotation curve, the flaring of the gas layer and the velocity dispersion in the HI. Here this method is applied to the almost edge-on Scd galaxy NGC 4244 for which the necessary parameters are determined in the accompanying paper (AJ, Aug. 1996; astro-ph/9605110). The observed flaring of the HI beyond the optical disk puts significant constraints on the shape of the dark matter halo, which are almost independent of the stellar mass-to-light ratio. NGC 4244's dark matter halo is found to be highly flattened with a shortest-to-longest axis ratio of 0.2 (-0.1)(+0.3). If the dark matter is disk-like, the data presented in this paper imply that the vertical velocity dispersion of the dark matter must be 10% - 30% larger than the measured tangential dispersion in the HI. Alternatively, the measured flaring curve is consistent with a round halo if the gaseous velocity dispersion ellipsoid is anisotropic. In that case the vertical dispersion of the gas is 50 - 70% of the measured tangential velocity dispersion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.