Abstract

BackgroundThe serine/threonine kinase StkP of Streptococcus pneumoniae is a major virulence factor in the mouse model of infection. StkP is a modular protein with a N-terminal kinase domain a C-terminal PASTA domain carrying the signature of penicillin-binding protein (PBP) and prokaryotic serine threonine kinase. In laboratory cultures, one target of StkP is the phosphoglucosamine mutase GlmM involved in the first steps of peptidoglycan biosynthesis. In order to further elucidate the importance of StkP in S. pneumoniae, its role in resistance to β-lactams has been assessed by mutational analysis in laboratory cultures and its genetic conservation has been investigated in isolates from infected sites (virulent), asymptomatic carriers, susceptible and non-susceptible to β-lactams.ResultsDeletion replacement mutation in stkP conferred hypersensitivity to penicillin G and was epistatic on mutations in PBP2X, PBP2B and PBP1A from the resistant 9V clinical isolate URA1258. Genetic analysis of 55 clinical isolates identified 11 StkP alleles differing from the reference R6 allele. None relevant mutation in the kinase or the PASTA domains were found to account for susceptibility of the isolates. Rather the minimal inhibitory concentration (MIC) values of the strains appeared to be determined by their PBP alleles.ConclusionThe results of genetic dissection analysis in lab strain Cp1015 reveal that StkP is involved in the bacterial response to penicillin and is epistatic on mutations PBP 2B, 2X and 1A. However analysis of the clinical isolates did not allow us to find the StkP alleles putatively involved in determining the virulence or the resistance level of a given strain, suggesting a strong conservation of StkP in clinical isolates.

Highlights

  • The serine/threonine kinase StkP of Streptococcus pneumoniae is a major virulence factor in the mouse model of infection

  • In Escherichia coli, GlmM is activated by phosphorylation and it has been shown, in vitro, that GlmM of S. pneumoniae is a substrate for the serine/threonine kinase Stk, suggesting a role for StkP in cell wall metabolism [5,6]

  • In this study we evaluate the role of StkP in β-lactam susceptibility both in "the model laboratory strain Cp1015" and in natural clinical isolates carrying different penicillin-binding protein (PBP) alleles

Read more

Summary

Introduction

The serine/threonine kinase StkP of Streptococcus pneumoniae is a major virulence factor in the mouse model of infection. One target of StkP is the phosphoglucosamine mutase GlmM involved in the first steps of peptidoglycan biosynthesis. In order to further elucidate the importance of StkP in S. pneumoniae, its role in resistance to βlactams has been assessed by mutational analysis in laboratory cultures and its genetic conservation has been investigated in isolates from infected sites (virulent), asymptomatic carriers, susceptible and non-susceptible to β-lactams. In Escherichia coli, GlmM is activated by phosphorylation and it has been shown, in vitro, that GlmM of S. pneumoniae is a substrate for the serine/threonine kinase Stk, suggesting a role for StkP in cell wall metabolism [5,6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.