Abstract

We have imaged the planetary nebula (PN) NGC 246 in the near-ultraviolet wavelengths [Ne v] 342.6 nm, the Bowen fluorescence line of 0 111 at 344.4 nm, and a nearby line-free region centered on 338.6 nm, as well as H(alpha), [O III] 500.7 nm, and [S II] 673.0 and 671.5 nm. Imaging in the 344.4 nm line is necessary to deconvolve contamination of the [Ne v] images by O III 342.9 nm. The emission from the shell and inner parts of the nebula is detected in [Ne v]. The radial profiles of the [Ne v] brightness decrease with radius from the exciting star, indicating that the bulk of the emission from this ion is due to the hard UV stellar radiation field, with a (probably) marginal contribution from collisional ionization in a shock between the PN shell and the interstellar medium (ISM). In contrast, the radial profiles of the emission in H(alpha), [0 III] 500.7 nm, and [S II] are flatter and peak at the location of the shell. The emission of [S II] probably traces the interaction of the PN with the ambient ISM. We also present two-dimensional numerical simulations for this PN-ISM interaction. The simulations consider the stellar motion with respect to the ambient ISM, with a velocity of 85 km/s , and include the time evolution of the wind parameters and UV radiation field from the progenitor star.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.