Abstract

We revisit the higher-order power method of De Lathauwer et al. (1995) for rank-one tensor approximation, and its relation to contrast maximization as used in blind deconvolution. We establish a simple convergence proof for the general nonsymmetric tensor case. We show also that a symmetric version of the algorithm, offering an order of magnitude reduction in computational complexity but discarded by De Lathauwer et al. as unpredictable, is likewise provably convergent. A new initialization scheme is also developed which, unlike the TSVD-based initialization, leads to a quantifiable proximity to the globally optimal solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.