Abstract

Using exceptional generalised geometry, we classify which five-dimensional mathcal{N} = 2 gauged supergravities can arise as a consistent truncation of 10-/11-dimensional supergravity. Exceptional generalised geometry turns the classification into an algebraic problem of finding subgroups GS ⊂ USp(8) ⊂ E6(6) that preserve exactly two spinors. Moreover, the intrinsic torsion of the GS structure must contain only constant singlets under GS, and these, in turn, determine the gauging of the five-dimensional theory. The resulting five-dimensional theories are strongly constrained: their scalar manifolds are necessarily symmetric spaces and only a small number of matter multiplets can be kept, which we completely enumerate. We also determine the largest reductive and compact gaugings that can arise from consistent truncations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call