Abstract

The secreted protein pattern of Streptomyces lividans depends on the carbon source present in the culture media. One protein that shows the most dramatic change is the high-affinity phosphate-binding protein PstS, which is strongly accumulated in the supernatant of liquid cultures containing high concentrations (>3 %) of certain sugars, such as fructose, galactose and mannose. The promoter region of this gene and that of its Streptomyces coelicolor homologue were used to drive the expression of a xylanase in S. lividans that was accumulated in the culture supernatant when grown in the presence of fructose. PstS accumulation was dramatically increased in a S. lividans polyphosphate kinase null mutant (Deltappk) and was impaired in a deletion mutant lacking phoP, the transcriptional regulator gene of the two-component phoR-phoP system that controls the Pho regulon. Deletion of the pstS genes in S. lividans and S. coelicolor impaired phosphate transport and accelerated differentiation and sporulation on solid media. Complementation with a single copy in a S. lividans pstS null mutant returned phosphate transport and sporulation to levels similar to those of the wild-type strain. The present work demonstrates that carbon and phosphate metabolism are linked in the regulation of genes and that this can trigger the genetic switch towards morphogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.