Abstract

Proteus mirabilis is a ubiquitous bacterium associated with complicated urinary tract infection (UTI). Mutagenesis studies of the wild-type strain HI4320 in the CBA mouse model of ascending UTIs have identified attenuated mutants with transposon insertions in genes encoding the high-affinity phosphate transporter Pst (pstS, pstA). The transcription of the pst operon (pstSCAB-phoU) and other members of the phosphate regulon of Escherichia coli, including alkaline phosphatase (AP), are regulated by the two-component regulatory system PhoBR and are repressed until times of phosphate starvation. This normal suppression was relieved in pstS::Tn5 and pstA::Tn5 mutants, which constitutively produced AP regardless of growth conditions. No significant growth defects were observed in vitro for the pst mutants during the independent culture or coculture studies in rich broth, phosphate-limiting minimal salts medium, or human urine. Mutants complemented with the complete pst operon repressed AP synthesis in vitro and colonized the mouse bladder in numbers comparable to the wild-type strain HI4320. Therefore, the Pst transport system imparts a significant in vivo advantage to wild-type P. mirabilis that is not required for in vitro growth. Thus, the Pst transporter has satisfied molecular Koch's postulates as a virulence factor in the pathogenesis of urinary tract infection caused by P. mirabilis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.