Abstract
Homogenisation and low-temperature sintering of multicomponent ultra-high temperature ceramics (UHTCs) are crucial technologies for their applications. However, the potential of utilizing the heterogeneous solid solution between UHTCs as a means of toughening has been neglected. The current work proposes a novel inhomogeneous solid solution phase composed of isomorphic HfC and TaC, which is designed to induce additional fracture energy dissipation. This phase is achieved using an ingenious powder screening method combined with the introduction of HfO2 sintering additive. The hardness and fracture toughness of the composite ceramics reached 14.9 ± 1.3 GPa and 6.5 ± 0.4 MPa m1/2, respectively. The toughening mechanism was studied using real two-dimensional structure stress simulation and density functional theory (DFT) calculations. Uneven valence electron concentration results in the ductile to brittle transition of Hf1-xTaxC. Crack deflection and bridging toughening mechanisms originate from the second phase stress of HfO2 particles and the heterogeneous matrix. This discovery will provide a noteworthy research direction for the design of high toughness multicomponent UHTCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.