Abstract

ABSTRACT The hot deformation behavior of the Mg-Gd-Y-Zn-Zr alloy formed by CMT arc additive under 400°C, 0.1 s−1, and 50% deformation were systematically studied by means of hot compression test, constitutive equation, numerical simulation and microscopic structure. After deformation, twinning appeared in the microstructure. A large number of high-density dislocations and stacking faults were distributed around it. This was the thermal stress generated during the compression process, causing the deformation of the grains and stress concentration within the grains. The deformation at the center of the specimen was severe, the grains were elongated, and the equivalent stress was high. The simulated peak stress was close to the experimental value. The effect of the high-temperature deformation on the crystal slip was independent of the deformation region. The slip occurred along the {10-10} crystal plane and the <11-20> crystal direction with the deformation, which was related to the Hcp structure of the alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.