Abstract

This paper reports the results of corrosion experiments of a commercial iron-nickel-chromium alloy in multiple oxidant gases at 800, 900, 1000, and 1100°C. Two sets of experiments were performed at low oxygen activities; one with high sulfur activities and the other with high sulfur and with high carbon activities. The scale growth and the morphologies are interpreted in terms of the calculated thermodynamic stability of the product phases. The calculated chromium sulfide-chromium oxide equilibrium coexistence lies at systematically lower oxygen potential than the experimentally observed transition. The transition from sulfidation to oxidation occurs over a range of\(P_{O_2 } \) at constant\(P_{S_2 } \).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.