Abstract
Since its first operation in 1956 at DFL Braunschweig and after its movement to Munich, the High-Speed Cascade Wind Tunnel (HGK) at Bundeswehr University Munich is intensively used for fundamental and application-oriented research on aero-thermodynamics of turbomachinery bladings. Numerous systematic airfoil design studies were performed over the last decades. Thanks to the HGK facility, which enables thorough and detailed cascade testing at turbomachinery-relevant conditions, many of those airfoils for different purposes finally made it into turbomachinery applications. Nowadays, the HGK still provides very useful contributions to the understanding of the complicated flow in compressor and turbine bladings, and thereby extends the knowledge on relevant physical phenomena. As a consequence of the intense usage, this unique test facility was subject to a major revision and upgrade. The performed changes are presented within this paper including an overview on new capabilities in terms of the extended operating range, the data acquisition system, and the recently available measurement equipment.
Highlights
The High-Speed Cascade Wind Tunnel (HGK) of the Bundeswehr University Munich is a well-established test facility in the turbomachinery community
As a consequence of the intense usage, this unique test facility was subject to a major revision and upgrade
Beside the continuous log for operation, the main architecture for test data acquisition (DAQ) was migrated to the National Instruments real-time platform PXI-8880 combined with a state-of-the-art LabView user interface developed in-house
Summary
The High-Speed Cascade Wind Tunnel (HGK) of the Bundeswehr University Munich is a well-established test facility in the turbomachinery community. In 1984, the entire test facility was moved to the Bundeswehr University Munich, where it got operational in 1985 after an overhaul of the main components as documented in Sturm and Fottner [3]. The main components, i.e., drive train, compressor, and oil system, date back to when the test facility first got into service in 1956. Some of these components exhibited already some pre-damages, cracks, and wear. The new components feature a higher power level providing a significantly extended operating range of the test facility. The picture of the new HGK is rounded by presenting the available portfolio of measurement techniques, both classical probe-based and non-intrusive techniques
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Turbomachinery, Propulsion and Power
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.