Abstract

Multiple tumors have responded well to immunotherapies, which use monoclonal antibodies to block the immune checkpoint proteins and reactivate the T-cell immune response to cancer cells. Significantly, the anti-PD-1 antibodies pembrolizumab and nivolumab, which were approved in 2014, have revolutionized cancer therapy, demonstrating dramatic improvement and longer duration. The US FDA authorized the third anti-PD-1 medication, cemiplimab, in 2018 for use in patients with cutaneous squamous cell carcinoma. To further understand the molecular mechanism of the antibody drug, we now reveal the intricate structure of PD-1 in complex with the cemiplimab Fab at a resolution of 1.98 Å. The cemiplimab-PD-1 interaction preoccupies the space for PD-L1 binding with a greater binding affinity than the PD-1/PD-L1 interaction, which is the basis for the PD-1 blocking mechanism. The structure reveals that cemiplimab and dostarlimab are significantly similar in PD-1 binding, although the precise interactions differ. A comparative investigation of PD-1 interactions with the four FDA-approved antibodies reveals that the BC, C'D, and FG loops of PD-1 adopt distinct conformations for optimal interaction with the antibodies. The structural characteristics in this work could be helpful information for developing more potent anti-PD-1 biologics against cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call