Abstract
The nonlocal Cahn-Hilliard equation with nonlocal diffusion operator is more suitable for the simulation of microstructure phase transition than the local Cahn-Hilliard equation. In this paper, based on the exponential semi-implicit scalar auxiliary variable method, the highly efficient and accurate schemes (in time) with unconditional energy stability for solving the nonlocal Cahn-Hilliard equation are proposed. On the one hand, we have demonstrated the unconditional energy stability and mass conservation for the nonlocal Cahn-Hilliard equation with its high-order numerical schemes in the continuous and discrete level carefully and rigorously. On the other hand, in order to reduce the calculation and storage cost in numerical simulation, we use the fast solver based on fast Fourier transform and conjugate gradient approach for spatial discretization. Some numerical simulations involving the Gaussian kernel are presented and show the stability, accuracy, efficiency and unconditional energy stability of the proposed schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.