Abstract
The application of high-throughput sequencing (HTS) technologies has revolutionized research on phytoplankton biodiversity by generating an unprecedented amount of molecular data in marine ecosystem surveys. However, high-level of molecular diversity uncovered in HTS-based metabarcoding analyses may lead to overinterpretation of phytoplankton diversity due to excessive intra-genomic variations (IGVs). The aims in this study are to explore the nature of phytoplankton molecular diversity and to test the hypothesis. We carried out single-cell metabarcoding analysis of 18S rDNA V4 sequences obtained in single Noctiluca scintillans cells isolated from various sites in coastal waters of China. Results showed that each single N. scintillans cell harbored a high level of IGVs with about 100 amplicon sequence variants (ASVs). The large numbers of non-dominant ASVs identified in N. scintillans cells, which might correspond to the larger numbers of ASVs annotated as N. scintillans and showed similar temporal dynamics in metabarcoding analyses, could inflate the inter-species diversity or intra-species genetic diversity. In addition, there were large numbers of additional ASVs that were not annotated as N. scintillans. These non-N. scintillans ASVs might represent diverse preys for N. scintillans, consistent with previous reports that N. scintillans may act as chance predator of a broad-spectrum preys. This single-cell study has unambiguously demonstrated that the existence of high levels of IGVs in N. scintillans and most likely many other phytoplankton species, demonstrating that the majority of the molecular diversity revealed in metabarcoding analysis, which were generally interpreted as the sum of inter-species diversity and intra-species diversity, actually included high levels of IGVs and should be interpreted with caution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.