Abstract

We studied the dynamics of large networks of spiking neurons with conductance-based (nonlinear) synapses and compared them to networks with current-based (linear) synapses. For systems with sparse and inhibition-dominated recurrent connectivity, weak external inputs induced asynchronous irregular firing at low rates. Membrane potentials fluctuated a few millivolts below threshold, and membrane conductances were increased by a factor 2 to 5 with respect to the resting state. This combination of parameters characterizes the ongoing spiking activity typically recorded in the cortex in vivo. Many aspects of the asynchronous irregular state in conductance-based networks could be sufficiently well characterized with a simple numerical mean field approach. In particular, it correctly predicted an intriguing property of conductance-based networks that does not appear to be shared by current-based models: they exhibit states of low-rate asynchronous irregular activity that persist for some period of time even in the absence of external inputs and without cortical pacemakers. Simulations of larger networks (up to 350,000 neurons) demonstrated that the survival time of self-sustained activity increases exponentially with network size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.