Abstract
Using Perelman’s approach for geometrical flows in terms of an entropy functional, the Higgs mechanism is studied dynamically along flows defined in the space of parameters and in fields space. The model corresponds to two-dimensional gravity that incorporates torsion as the gradient of a Higgs field, and with the reflection symmetry to be spontaneously broken. The results show a discrete mass spectrum and the existence of a mass gap between the Unbroken Exact Symmetry and the Spontaneously Broken Symmetry scenarios. In the latter scenario, the geometries at the degenerate vacua correspond to conformally flat manifolds without torsion; twisted two-dimensional geometries are obtained by building perturbation theory around a ground state; the tunneling quantum probability between vacua is determined along the flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.