Abstract

BackgroundSynovial hypoxia, a critical pathological characteristic of rheumatoid arthritis (RA), significantly contributes to synovitis and synovial hyperplasia. In response to hypoxic conditions, fibroblast-like synoviocytes (FLS) undergo adaptive changes involving gene expression modulation, with hypoxia-inducible factors (HIF) playing a pivotal role. The regulation of BCL2/adenovirus e1B 19 kDa protein interacting protein 3 (BNIP3) and nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3) expression has been demonstrated to be regulated by HIF-1. The objective of this study was to examine the molecular mechanism that contributes to the aberrant activation of FLS in response to hypoxia. Specifically, the interaction between BNIP3-mediated mitophagy and NLRP3-mediated pyroptosis was conjointly highlighted. MethodsThe research methodology employed Western blot and immunohistochemistry techniques to identify the occurrence of mitophagy in synovial tissue affected by RA. Additionally, the levels of mitophagy under hypoxic conditions were assessed using Western blot, immunofluorescence, quantitative polymerase chain reaction (qPCR), and CUT&Tag assays. Pyroptosis was observed through electron microscopy, fluorescence microscopy, and Western blot analysis. Furthermore, the quantity of reactive oxygen species (ROS) was measured. The silencing of HIF-1α and BNIP3 was achieved through the transfection of short hairpin RNA (shRNA) into cells. ResultsIn the present study, a noteworthy increase in the expression of BNIP3 and LC3B was observed in the synovial tissue of patients with RA. Upon exposure to hypoxia, FLS of RA exhibited BNIP3-mediated mitophagy and NLRP3 inflammasome-mediated pyroptosis. It appears that hypoxia regulates the expression of BNIP3 and NLRP3 through the transcription factor HIF-1. Additionally, the activation of mitophagy has been observed to effectively inhibit hypoxia-induced pyroptosis by reducing the intracellular levels of ROS. Conclusion: In summary, the activation of FLS in RA patients under hypoxic conditions involves both BNIP3-mediated mitophagy and NLRP3 inflammasome-mediated pyroptosis. Additionally, mitophagy can suppress hypoxia-induced FLS pyroptosis by eliminating ROS and inhibiting the HIF-1α/NLRP3 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.