Abstract

Ecologic systems, which are involved mainly in the processing of energy and materials, are actually nested one inside another—they are simultaneously parts and wholes. This fundamental hierarchical organization is easy to detect in nature but has been undervalued by ecologists as a source of new insights about the structure and development of ecosystems and as a means of understanding the crucial connections between ecologic processes and large-scale evolutionary patterns. These ecologic systems include individual organisms bundled into local populations, populations as functional components of local communities or ecosystems, local systems making up the working parts of larger regional ecosystems, and so on, right up to the entire biosphere. Systems at any level of organization can be described and interpreted based on aspects of scale (size, duration, and “membership” in more inclusive entities), integration (all the vital connections both at a particular focal level and across levels of hierarchical organization), spatiotemporal continuity (the “life history” of each system), and boundaries (either membranes, skins, or some other kind of border criterion). Considering hierarchical organization as a general feature of ecologic systems could reinvigorate theoretical ecology, provide a realistic scaling framework for paleoecologic studies, and – most importantly – forge new and productive connections between ecology and evolutionary theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call