Abstract

The book presents a new concept on several physics topics. The initial values are non-relativistic quantities of subatomic particles which the values obtained in experiments are actually their relativistic reflection. The subjects in the book are presented in such order that each new topic is based on the development of its predecessor that explains where it stems from. The book presents methods of analyzing traditional physics concepts to extract hidden embedded information that reveals new variables which are combined with those known. The new formulas yield results that match experiments accurately. It presents discoveries as: The electric charge of subatomic particle results directly from its OAM (Orbital Angular Momentum). OAM Offset exhibits neutral state. The electron mass is a magnitude that expresses quantitatively the square of its magnetic flux quantum, hence this mass in the Wave Function yields solutions that their squared values represent the flow pattern of magnetic flux surrounding electrons at energy levels, contrary to probability density describing odds of locating electron in atom. In calculation of hydrogen's wave function the electron and proton constitute one entity. Hence zero OAM at ground state determined by computational and experimental means is due to OAM offset of electron and proton rotation in opposite directions at center of mass. The proton, neutron and all baryons consist of three energy levels on which the quarks are orbiting. The third energy level of 80.5Gev plays a major role in the weak force while it is filled by charged mesons that are emitted thru W boson while acquiring the level's energy. The OAM of the orbiting quarks are third or two thirds of the reduced Planck constant. The proton missing spin is resolved by the OAM of quarks. The Electron is bound state composition of a negative Pion and an Electron's neutrino. The theory predicts a neutral boson of 160Gev (Accompanied by W+ boson from 240Gev decaying particle).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.