Abstract
The H∞-functional calculus is an extension of the Riesz-Dunford functional calculus for bounded operators to unbounded sectorial operators, and it was introduced by A. McIntosh in [165]; see also [5]. This calculus is connected with pseudodifferential operators, with Kato’s square root problem, and with the study of evolution equations and, in particular, the characterization of maximal regularity and with the fractional powers of differential operators. For an overview and more problems associated with this functional calculus for the classical case, see the book [156] and the references therein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.