Abstract

Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs.

Highlights

  • The Bunyaviridae family comprises more than 330 viruses that affect vertebrates and plants

  • The Rift Valley fever virus (RVFV), a negative strand RNA virus spread by infected mosquitoes, affects livestock and humans who can develop a severe disease

  • We studied the structure of its nucleoprotein (N), which forms a filamentous coat that protects the viral RNA genome and is required for RNA replication and transcription by the polymerase of the virus

Read more

Summary

Introduction

The Bunyaviridae family comprises more than 330 viruses that affect vertebrates and plants. The Bunyaviridae family includes several other emerging human pathogens, such as the Hantaan and Sin Nombre viruses (genus Hantavirus) and the Crimean-Congo hemorrhagic fever virus (genus Nairovirus). The Rift Valley fever virus (RVFV), a Phlebovirus within the Bunyaviridae family, is transmitted by Aedes and Culex mosquitoes and is a medically and agriculturally important cause of epizootics in Africa. This virus primarily affects livestock, humans can be infected as well, and infections can lead to several syndromes ranging from a febrile illness to blindness, encephalitis and lethal hemorrhagic fever.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call