Abstract

Retention of juvenile traits in the adult reproductive phase characterizes a process known as neoteny, and speculation exists over whether it has contributed to the evolution of new species. The dominant Corngrass1 (Cg1) mutant of maize is a neotenic mutation that results in phenotypes that may be present in the grass-like ancestors of maize. We cloned Cg1 and found that it encodes two tandem miR156 genes that are overexpressed in the meristem and lateral organs. Furthermore, a target of Cg1 is teosinte glume architecture1 (tga1), a gene known to have had a role in the domestication of maize from teosinte. Cg1 mutant plants overexpressing miR156 have lower levels of mir172, a microRNA that targets genes controlling juvenile development. By altering the relative levels of both microRNAs, it is possible to either prolong or shorten juvenile development in maize, thus providing a mechanism for how species-level heterochronic changes can occur in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call