Abstract

Herschel FIR observations are used to construct Virgo cluster galaxy luminosity functions and to show that the cluster lacks the very bright and the numerous faint sources detected in field galaxy surveys. The far-infrared SEDs are fitted to obtain dust masses and temperatures and the dust mass function. The cluster is over dense in dust by about a factor of 100 compared to the field. The same emissivity (beta) temperature relation applies for different galaxies as that found for different regions of M31. We use optical and HI data to show that Virgo is over dense in stars and atomic gas by about a factor of 100 and 20 respectively. Metallicity values are used to measure the mass of metals in the gas phase. The mean metallicity is about 0.7 solar and 50% of the metals are in the dust. For the cluster as a whole the mass density of stars in galaxies is 8 times that of the gas and the gas mass density is 130 times that of the metals. We use our data to consider the chemical evolution of the individual galaxies, inferring that the measured variations in effective yield are due to galaxies having different ages, being affected to varying degrees by gas loss. Four galaxy scaling relations are considered: mass-metallicity, mass-velocity, mass-star formation rate and mass-radius - we suggest that initial galaxy mass is the prime driver of a galaxy's ultimate destiny. Finally, we use X-ray observations and galaxy dynamics to assess the dark and baryonic matter content compared to the cosmological model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call