Abstract
Abstract Recent observations from Herschel allow the identification of important mechanisms responsible both for the heating of the gas that surrounds low-mass protostars and for its subsequent cooling in the far-infrared. Shocks are routinely invoked to reproduce some properties of the far-IR spectra, but standard models fail to reproduce the emission from key molecules, e.g., H2O. Here, we present the Herschel Photodetector Array Camera and Spectrometer (PACS) far-IR spectroscopy of 90 embedded low-mass protostars (Class 0/I). The Herschel-PACS spectral maps, covering ∼55–210 μm with a field of view of ∼50″, are used to quantify the gas excitation conditions and spatial extent using rotational transitions of H2O, high-J CO, and OH, as well as [O i] and [C ii]. We confirm that a warm (∼300 K) CO reservoir is ubiquitous and that a hotter component (760 ± 170 K) is frequently detected around protostars. The line emission is extended beyond ∼1000 au spatial scales in 40/90 objects, typically in molecular tracers in Class 0 and atomic tracers in Class I objects. High-velocity emission (≳90 km s−1) is detected in only 10 sources in the [O i] line, suggesting that the bulk of [O i] arises from gas that is moving slower than typical jets. Line flux ratios show an excellent agreement with models of C-shocks illuminated by ultraviolet (UV) photons for pre-shock densities of ∼105 cm−3 and UV fields 0.1–10 times the interstellar value. The far-IR molecular and atomic lines are a unique diagnostic of feedback from UV emission and shocks in envelopes of deeply embedded protostars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.