Abstract
The Herpes Simplex Virus 1 (HSV-1) glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG). gE-gI can also participate in antibody bipolar bridging (ABB), a process by which the antigen-binding fragments (Fabs) of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI–bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI–dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.
Highlights
Herpes Simplex Virus (HSV), Varicella-Zoster Virus (VZV), and Pseudorabies Virus (PrV) are members of the alpha herpes virus family, which are characterized by a relatively short replicative cycle in epithelial tissues and egression to and latent infection of the sensory neurons [1,2,3,4,5]
Herpes Simplex Virus 1 (HSV-1) can avoid the protective effects of antibodies by producing glycoprotein E (gE)-glycoprotein I (gI), a receptor that binds to the constant portion of immunoglobulin G (IgG) (Fc), thereby tethering the antibody in a position where it cannot trigger downstream immune functions
A gE-gI–bound IgG can participate in antibody bipolar bridging (ABB) such that the fragment antigen binding (Fab) bind a viral antigen and the Fc binds gE-gI
Summary
Herpes Simplex Virus (HSV), Varicella-Zoster Virus (VZV), and Pseudorabies Virus (PrV) are members of the alpha herpes virus family, which are characterized by a relatively short replicative cycle in epithelial tissues and egression to and latent infection of the sensory neurons [1,2,3,4,5]. HSV-1 encodes type 1 transmembrane glycoproteins, glycoprotein E (gE) and glycoprotein I (gI), that are displayed on the surface of infected cells and virions. Together they function as a receptor for the Fc region of human immunoglobulin G (IgG) [8,9] and have been implicated in cell-to-cell spread of virus [10,11]. The Fc receptor function of gE-gI, which hinders access to the IgG Fc region and allows HSV-infected cells to escape recognition by Fc-dependent effector cells, may serve as a mechanism to block antibody-related host defenses [16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.