Abstract

Hepatocyte growth factor (HGF) is a pleiotrophic factor involved in cellular proliferation, migration and morphogenesis. HGF is required for normal tissue and organ development during embryogenesis, but in the adult HGF has been demonstrated to drive normal tissue repair and inhibit fibrotic remodeling. HGF has two naturally occurring human isoforms as a result of alternative splicing, NK1 and NK2. While NK1 has been defined as an agonist for HGF receptor, Met, NK2 is defined as a partial Met antagonist. Furthermore, under conditions of fibrotic remodeling, NK2 is still expressed while full length HGF is suppressed. Furthermore, the mechanism by which NK2 partially signals through Met is not completely understood. Here, we investigated the mitogenic, motogenic, and anti-apoptotic activities of NK2 compared with full length HGF in primary human bronchial epithelial cells (BEpC) and bovine pulmonary artery endothelial cells (PAEC). In human BEpC, NK2 partial activated Met, inducing Met phosphorylation at Y1234/1235 in the tyrosine-kinase domain but not at Y1349 site in the multifunctional docking domain. Partial phosphorylation of Met by NK2 resulted in activation of MAPK and STAT3, but not AKT. This correlated with motogenesis and survival in a MAPK-dependent manner, but not cell proliferation. Overexpression of a constitutively active AKT complemented NK2 signaling, allowing NK2 to induce cell proliferation. These data indicate that NK2 and HGF drive motogenic and anti-apoptotic signaling but only HGF drives cell proliferation by activating AKT-pathway signaling. These results have implications for the biological consequences of differential regulation of the two isoforms under pro-fibrotic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.