Abstract
The hereditary hemochromatosis-associated membrane proteins HFE, TfR2, and HJV are required for adequate hepatic expression of the iron hormone hepcidin. While the genetic interactions are clear, it remains elusive how bone morphogenetic protein co-receptor HJV functions together with HFE and TfR2 to activate hepcidin transcription via the BMP-SMAD signaling pathway. Here, we investigate whether HFE, TfR2, and HJV physically interact on the surface of hepatocytes. We explore protein-protein interactions by glycerol gradient sedimentation assays and co-immunoprecipitation analyses in transfected HuH7 hepatoma-derived cells. Our data demonstrate that HFE and TfR2 bind HJV in a non-competitive manner. Co-immunoprecipitation analyses provide direct experimental evidence that HFE, TfR2, and HJV form a multi-protein membrane complex. Our experiments show that like TfR2, HJV competes with TfR1 for binding to HFE, indicating that the expression of TfR2 and HJV may be critical for iron sensing. We identify residues 120-139 of the TfR2 extra-cellular domain as the critical amino acids required for the binding of both HFE and HJV. Interestingly, RGMA, a central nervous system homolog, can substitute for HJV in the complex and promote hepcidin transcription, implicating RGMA in the local control of hepcidin in the CNS. Taken together, our findings provide a biochemical basis for hepcidin control by HFE, TfR2, and HJV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.