Abstract

Despite the critical importance of the hydroxyl radical in major scientific fields, there are still open questions on the behavior of this species in the aqueous phase. In particular, there has been much debate on the existence of a hemibonded interaction between the hydroxyl radical and water molecules. While some reports indicate that the hemibonded radical might explain some experimental data, others have claimed that this interaction is simply a density functional theory (DFT) artifact. Here, we provide results from high level (basis set limit of coupled-cluster levels up to single, double, triple excitations (CCSD(T)) and beyond) ab initio calculations of different OH•(H2O)n clusters in the gas phase to accurately explore the existence of the hemibonded interaction and its energy difference with respect to other well-defined hydrogen bond interactions. Additional comparisons with second order perturbation theory (MP2) and DFT are also presented. Constrained molecular dynamics was applied to determine the free energy for the formation/disruption and ice systems. Overall, our findings confirm that the hemibond can be an alternative structure for the hydroxyl radical in the condensed phase when the formation of hydrogen bonds is impeded. These results will aid the understanding of theoretical and experimental data and help future experimental designs for the detection of this important species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.