Abstract

We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba(3) and caa(3)) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O) under reducing anaerobic conditions. The rate of NO consumption and N(2)O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 +/- 0.7 mol NO/mol ba(3) x min and 32 +/- 8 mol NO/mol caa(3) x min at [NO] approximately 50 microM and 20 degrees C) that, though considerably lower than that of bona fide NO reductases (300-4,500 mol NO/mol enzyme x min), is definitely significant. We also show that for ba(3) oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar Cu(B)(+) coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb(3) terminal oxidases. Our findings represent functional evidence in support of this hypothesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.