Abstract

BackgroundFilarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.Methods and FindingsGenome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a ∼600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5′-aminolevulinic acid dehydratase (ALAD, the second step). Similarly, Escherichia coli hemH (FC) deficient strains transformed with human and Wolbachia FC homologues showed significantly different sensitivities to NMMP. This approach enables functional complementation in E. coli heme deficient mutants as an alternative E. coli-based method for drug screening.ConclusionsOur studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi (wBm) might be essential for the filarial host survival. In addition, the results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues.

Highlights

  • Human filarial nematodes affect more than 150 million people worldwide with 1 billion people at risk in over 80 countries, and lead to some of the most debilitating tropical diseases, including elephantiasis and African river blindness [1,2]

  • Our studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi might be essential for the filarial host survival

  • The results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues

Read more

Summary

Introduction

Human filarial nematodes affect more than 150 million people worldwide with 1 billion people at risk in over 80 countries, and lead to some of the most debilitating tropical diseases, including elephantiasis and African river blindness [1,2]. The current antifilarial treatments e.g. DEC, ivermectin, albendazole (all suitable for lymphatic filariasis; ivermectin for onchocerciasis) interrupt the cycle of transmission of the causative filarial parasites Brugia malayi, Onchocerca volvulus and Wuchereria bancrofti, by predominantly killing microfilaria. In both laboratory and human trials, show that depletion of Wolbachia in filarial parasites by antibiotics (e.g. Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. Human trials have confirmed this approach, the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call