Abstract

Textbooks frequently use the Helmholtz theorem to derive expressions for electrostatic and magnetostatic fields but they do not usually apply this theorem to derive expressions for time-dependent electric and magnetic fields, even when there is no formal objection to doing so because the proof of the theorem does not involve time derivatives but only spatial derivatives. Here we address the question as to whether the Helmholtz theorem is useful in deriving expressions for the fields of Maxwell’s equations. We show that when this theorem is applied to Maxwell’s equations we obtain instantaneous expressions of the electric and magnetic fields, which are formally correct but of little practical usefulness. We then discuss two generalizations of the theorem which are shown to be useful in deriving the retarded fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.